LESSON #8: SOLVING HIGHER-DEGREE POLYNOMIAL EQUATIONS WITH COMPLEX ROOTS

Do Now:

Given: 2x+3=11 -3-3 2x=8x=4

a. What is the degree?

Ì

b. How many solutions are there?

١

c. What is the solution(s)?

Given: $x^{2} - 9 = 0$ + Q + Q - Q - Q- Q

a. What is the degree?

2

b. How many solutions are there?

2

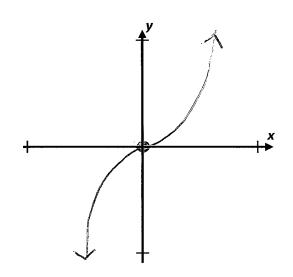
c. What is the solution(s)?

For #1 and 2, solve for all real and complex solutions of the following polynomial equations. Sketch the graph to verify your results.

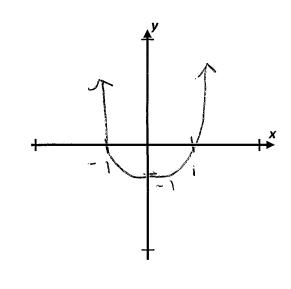
1)
$$x^{3} + 4x = 0$$

 $x(x^{2} + 4) = 0$
 $x = 0$

EB = down, up


a. What is the solution(s)?

b. What is the degree?


3

c. How many solutions are there?

3

2)
$$x^4 - 1 = 0$$

 $(x^2 - 1)(x^2 + 1) = 0$
 $(x^2 + 1)(x^2 + 1) = 0$

3)
$$x^{3} + 5x = 0$$

$$\frac{x(x^{2} + 5) = 0}{x = 0 \sqrt{x^{2} + 5} = 0}$$

$$x = 0 \sqrt{x^{2} + 5} = 0$$

$$\sqrt{x^{2} + 5} =$$

4)
$$x^4 - 5x^2 - 36 = 0$$

 $(x^2 - 9)(x^2 + 4) = 0$
 $(x^2 - 9)(x^2 + 4) = 0$

5)
$$x^{3} + 27 = 0$$
 $(a+b)(a^{2} - ab + b^{2})$ $(x+3)(x^{2} - 3x + 9) = 0$

$$x = -3$$

$$x = -(-3) \pm \sqrt{(-3)^{2} - 4(1)(9)}$$

$$x = 3 \pm \sqrt{-27}$$

$$x = 3 \pm \sqrt{31/3}$$

$$x = 3 \pm 31/3$$

Practice:

6)
$$x^{3} - 5x^{2} + 4x - 20 = 0$$

 $x^{2}(x-5) + 4(x-5)$
 $(x^{2} + 4)(x-5) = 0$
 $x^{2} - 4$
 $x = 5$
 $x = \pm 2i$

8)
$$x^{4} - 6x^{2} - 7 = 0$$

$$(x^{2} - 7)(x^{2} + 1) = 0$$

$$(x^{2} - 7)(x^{$$

7)
$$x^{3} + 16x = 0$$

$$\frac{x(x^{2} + 10) = 0}{x = 0}$$

$$x = 0 | x^{2} = -100$$

$$x = \pm 41$$

$$x = 0$$

$$x = 0 | x^{2} = -100$$

$$x = \pm 41$$

9)
$$x^{3}+8=0$$
 (a+b)($a^{2}+axb^{2}$)
 $(x+2)(x^{2}-2x+4)$
 -2 ($x=-(-2)\pm\sqrt{-12}$)(4)
 $x=2\pm\sqrt{-12}$ ($x=-(-2)\pm\sqrt{-12}$)(4)
 $x=2\pm\sqrt{-12}$ ($x=-(-2)\pm\sqrt{-12}$)(3)
 $x=-(-2)\pm\sqrt{-12}$ ($x=-(-2)\pm\sqrt{-12}$)(3)
 $x=-(-2)\pm\sqrt{-12}$ ($x=-(-2)\pm\sqrt{-12}$)(4)
 $x=-(-2)\pm\sqrt{-12}$ ($x=-(-2)\pm\sqrt{-12}$)(4)