Name: Kly

Date: 1/21/17
TROICI

LESSON #5: FOCUS AND DIRECTRIX

Do Now:

<u>Definition of a parabola:</u> The collection of all points equidistant from a fixed point (known as a **focus**) and a fixed line (known as a **directrix**).

http://www.intmath.com/plane-analytic-geometry/parabola-interactive.php

When the vertex is at (h, k) and the **distance from the focus to the directrix** is p, the equation of the parabola is:

$$(y-k) = \frac{1}{2p}(x-h)^2$$

1. Draw the parabola and write the equation for the focus and directrix given below.

$$y - (-2) = \frac{1}{2(4)} (x - 0)^{2}$$

$$|y + 2| = \frac{1}{8} x^{2}$$

$$|-2| = \frac{1}{2(4)} =$$

$$y = \frac{1}{8}x^2 - 2$$

2. Draw the parabola and write the equation whose **focus** is (0,1) and directrix is y=6.

$$y-(3.5)=\frac{1}{2(5)}(x-0)^2$$

$$y-3.5 = \frac{1}{10} x^{2}$$

$$+3.5 + 3.5$$

$$y = \frac{1}{10} x^{2} + 3.5$$

$$y = \frac{1}{10} x^2 + 3.5$$

3. Draw the parabola and write the equation whose **vertex** is (-2,3) and directrix is the x-axis.

$$y-3=\frac{1}{2(6)}(x-2)^2$$

$$y-3 = \frac{1}{2(6)}(x-2)^{2}$$

$$y-3 = \frac{1}{12}(x+2)^{2}$$

$$+3$$

$$y = \frac{1}{12}(x+2)^{2} +3$$

Partner Practice:

4. Draw the parabola and write the equation of the parabola for the focus and directrix given to the right.

$$y-(-1)=\frac{1}{2(4)}(x-0)^2$$

$$y-(-1) = \frac{1}{2(4)}(x-0)^{2}$$

$$y+1 = \frac{1}{8}x^{2}$$

$$y=\frac{1}{8}x^{2}-1$$

30 The directrix of the parabola $12(y+3) = (x-4)^2$ has the equation y = -6. Find the coordinates of the focus of the parabola. $12(y+3) = (x-4)^2$

FOCUS = (0,4)

19 Which equation represents the set of points equidistant from line land point R shown on the graph below?

(3)
$$y = -\frac{1}{8}(x+2)^2 + 1$$
 (3) $y = -\frac{1}{8}(x+2)^2 + 1$

(1)
$$y = -\frac{1}{8}(x+2)^2 + 1$$
 (3) $y = -\frac{1}{8}(x-2)^2 + 1$
(2) $y = -\frac{1}{8}(x+2)^2 - 1$ (4) $y = -\frac{1}{8}(x-2)^2 - 1$

CC ALGEBRA 2

LAB #12

1) Find the standard form of the equation of a parabola with the given characteristics:

vertex (0, 0) and directrix at y = -3

$$p = 0$$

 $ver + ex = (0,0)$
 $y = 0 = \frac{1}{2(e)}(x - 0)^2$
 $y = \frac{1}{12}x^2$

2) Write the equation of a parabola whose directrix is y = 2 and focus is (1, 0).

$$y=-2$$

 $y-1=\frac{1}{2}(x-1)^{2}$

vertex = (1,1)

$$y-1 = \frac{1}{2(-2)}(x-1)^{2}$$

$$y-1 = -\frac{1}{4}(x-1)^{2}$$

$$+1$$

$$-\frac{1}{4(x-1)^{2}}$$

3) Write the coordinates of the focus of a parabola if the turning point (vertex) is (2, -1) and the directrix is y = 2.

$$Vertex = (2,-1)$$

$$y = (1) = \frac{1}{2(-1)}(x-2)^{2}$$

$$y + 1 = -\frac{1}{12}(x-2)^{2}$$

$$y = -\frac{1}{12}(x-2)^{2}$$

$$y = -\frac{1}{12}(x-2)^{2}$$
[W:

REVIEW:

4) Find the standard form of a circle with center (2, -3) and radius of 4.

$$(x-2)^{2} + (y+3)^{2} = 4^{2}$$

$$(x-2)(x-2) + (y+3)(y+3) = 16$$

$$x^{2}-2x-2x+4+y^{2}+3y+3y+9=16$$

$$x^{2}-4x+4+y^{2}+6y+9=16$$

$$x^{2}-4x+4+y^{2}+6y+9=16$$

5) a) Write the equation of a circle in center-radius form:

$$\frac{x^{2}+y^{2}-2x-6y-6=0}{\sqrt{2}(2x^{2}+1)+\sqrt{2}(2y^{2}+2)} = \sqrt{2} + \sqrt{2}$$

b) Identify the center and radius.