Date: _____

LESSON #7: MORTGAGE FORMULAS

1. Monthly mortgage payments can be found using the formula below:

$$M = \frac{P\left(\frac{r}{12}\right)\left(1 + \frac{r}{12}\right)^n}{\left(1 + \frac{r}{12}\right)^n - 1}$$

M = monthly paymentP = amount borrowed

r = annual interest rate n = number of monthly payments

The Banks family would like to borrow \$120,000 to purchase a home. They qualified for an annual interest rate of 4.8%. Algebraically determine the *fewest* number of whole years the Banks family would need to include in the mortgage agreement in order to have a monthly page of the second second

Using the formula below, determine the monthly payment on a 5-year car loan with a monthly percentage rate of 0.625% for a car with an original cost of \$21,000 and a \$1000 down payment, to the nearest cent. r= .00025

$$P_n = 21000 - 1000$$
 $P_n = 20,000$

$$P_n = PMT \left(\frac{1 - \left(1 + i\right)^{-n}}{i} \right)$$

 P_n = present amount borrowed 2000

 $n = \text{number of } \underline{\text{monthly pay periods }} 5 \times 12 = (00 \text{ monthly pay }}$

i = interest rate per month . 00025

$$20000 = PMT \left(\frac{1 - (1 + .00025)}{.00025} \right)$$

2b.

The affordable monthly payment is \$300 for the same time period. Determine an appropriate down payment, to the nearest dollar. DMT

21000 -
$$x = 300 \left(\frac{1 - (1 + .00025)^{-60}}{.00025} \right)$$

21000 - $x = 14971.5924$
-21000 -21000
- $x = -6028.4075$
 $x = 6028.41$
 $x = 6028.41$

Name:	
CC ALGEBRA 2	

Date: _____

MORE PRACTICE!

Jim is looking to buy a vacation home for \$172,600 near his favorite southern beach. The formula to compute a mortgage payment, M, is $M = P \cdot \frac{r(1+r)^N}{(1+r)^N-1}$ where P is the principal amount of the loan, r is the monthly interest rate, and N is the number of monthly payments. Jim's bank offers a monthly interest rate of 0.305% for a 15-year mortgage.

With no down payment, determine Jim's mortgage payment, rounded to the nearest dollar.

$$M = 172,(600) \cdot \left(\frac{.00305(1+.00305)^{180}}{(1+.6036)^{180}-1}\right)$$

$$Caic$$

$$M = 172,(600) \cdot .007227$$

$$M = 1247.49$$

$$M = 81247$$

Algebraically determine and state the down payment, rounded to the *nearest dollar*, that Jim needs to make in order for his mortgage payment to be \$1100.