Name:	1	LU	<u>)</u>	\		
CC ALG	EBR	A 2	7)		

TROICI

LESSON #1: LOG WORD PROBLEMS

Do Now:

1. A loan for \$8,000 compounds yearly at a rate of 2.5%. What will the cost of the loan after 3 years? (HINT: Use the formula $A = P(1 + r)^{t}$) A=8000(1+.025)3=[\$8(15.13] += 3

p=8000

(= .025 2. A house purchased 5 years ago for \$100,000 was just sold for \$135,000. Assuming exponential growth, approximate the annual growth rate, to the nearest percent. (HINT: Use the formula $A = P(1 + r)^t$)

ate, to the hedrest percent. (HINT: Use the formula
$$A = P(1+T)$$
)
$$\frac{135000}{1000000} = \frac{100,000}{10000000} (1+T)^{5} > 1.0618 = 1+T$$

$$(1.35) = ((1+T)^{5})$$

$$(1.35) = ((1+T)^{5})$$

$$(1.36) = ((1+T)^{5})$$

Compounded	Compounded	Compounded		
Annually	Semi-annually/ quarterly/ weekly/monthly/daily	Continuously		
A=P(I+T)+	A = P(1+ 5)n+	A=Pert		
A= FINUL AMOUNT P= INITIAL AMOUNT F= rate as a decimal	n=1 mitic final P=1nitial y=vate as decimal +=time n=compounded	A=FINAI P=INITIAI r=Vate as a decimo		

SOLVING FOR AN EXPONENT? USE LOGS!!!!!!!!! +=+1172 += +IM

1. Find the time, to the nearest year, required for a \$7500 investment to double at an interest rate of 7.25% is growth -> + compounded annually.

$$A = 15000$$
 $P = 7500$
 $C = .0725$
 $C = .0725$

$$A = P(1+r)^{+}$$

$$\frac{15000}{7500} = \frac{7500(1+.0725)^{+}}{7500}$$

$$\frac{15000}{7500} = \frac{7500}{7500}$$

$$\frac{15000}{$$

2. Going away on a family vacation of four to Disney World is very expensive. The cost of the trip is \$5,500. If you put \$1,000 into an account at a ,5% annual interest rate compounded monthly, how long, to the nearest tenth, will it take you to save up for this trip?

$$A = 5500$$
 $P = 1000$
 $\Gamma = .005$
 $P = 12$
 $P = 12$

The save up for this trip?

$$A = P(1+f_1)^{n+1}$$

$$\frac{5500}{1000} = \frac{1000(1+\frac{005}{12})^{12+1}}{1000}$$

$$\frac{1000}{1000} = \frac{1000}{1000}$$

$$\frac{12+}{1000} = \frac{1000}{1000}$$

$$\frac{12+}{1000} = \frac{1000}{1000}$$

12+= 41092.244L

	~ P	35=.08		1
		('		$n-0a^{-1}$
3.	Grace invests \$6,000 in a CD at an annual rate of	8% compounded continuously.	SI	H-IE

a) Determine, to the nearest dollar, the amount of money she will have after 5 years. \rightarrow † $A = (0000 \in (08)(5)) \rightarrow COIC$

$$A = (0000 e^{(08)(5)} \rightarrow caic)$$
 $A = 8951$

b) Determine how many years, to the nearest year, it will take for her investment to triple.

$$\frac{18000 = 6000e^{.081}}{6000} = \frac{6000e^{.081}}{6000}$$

$$+ = 13.73 \text{ yrs}$$

$$+ = 18000$$

$$+ = 14 \text{ years}$$

$$+ = 14 \text{ years}$$

4. Depreciation of a cars value can be determined by the formula $V = C(1-r)^t$, where V is the value of the car after t years, C is the original cost, and r is the rate of depreciation. If a cars cost, when new, is \$15,000, the rate of depreciation is 30%, and the value of the car now is \$3,000. How old is the car to the nearest tenth of a year? 4 (= .30)

$$\frac{3000 = 15000(1 - .30)^{+}}{15000}$$

$$.2 = (.7)^{+}$$

$$+ = 109.7.2 \rightarrow [+ = 4.5 \text{ years}]$$

2 r=,10

5. Sabrina is saving for a new car which will cost \$15,000. If she puts \$5,000 in an account which earns a 10% interest compounded semi-annually, how long will it take her to save enough money to buy the car? Round to 4 n=2 b++? the nearest year.

$$\begin{array}{ll}
A = P(1+\frac{r}{n})^{n+} \\
15000 + \frac{5000}{5000}(1+\frac{r}{2})^{2+} & 2t = 109_{1.05} \\
\hline
3 = (1.05)^{2+} & 2 \\
\hline
+ = 11.2585
\end{array}$$

6. Luke invests \$10,000 at an annual rate of 5% compounded continuously: $A = Pe^{M}$

a) Determine, to the nearest dollar, the amount of money he will have after 2 years.

b) Determine how many years, to the nearest year, it will take for his investment to double.

$$\frac{20,000 = 10000 e \cdot 05^{+}}{10000} = \frac{10000}{10000} = \frac{.05^{+} = 102}{.05} \rightarrow += 13.8629$$

$$2 = e \cdot 05^{+} = \frac{.05^{+} = 102}{.05} \rightarrow += 14.8629$$