CC	GEC	M	ETI	RY

Name: _____

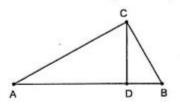
Date:

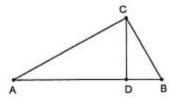
TROICI

MINI-LESSON #7: SIMILARITY

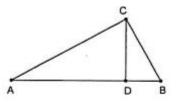
TRIANGLE SIMILARITY

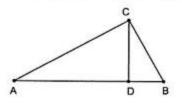
•	When two triangles are similar they are the same	but different	·
•	Angles of similar triangles are		
•	*Sides of similar triangles are	.* (<u>NOT CONGRUENT</u> !)	
•	Sides AND PERIMETERS of similar triangles will share the same		

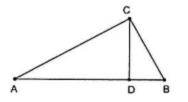

- Scale factors when a triangle goes from small to big are _______
- Scale factors when a triangle goes from big to small are ______
- You can prove triangles are similar by proving angles are congruent or if the sides share the same ratio. These are our *similarity postulates* listed below:


HLLS	SAAS

PRACTICE WITH HLLS AND SAAS


Right triangle ABC with altitude \overline{CD} : 1. If AD = 3, CD = 6, find DB


2. If AC = 10, AD = 5, find AB.

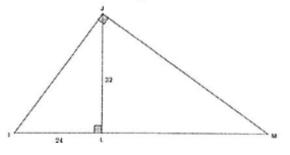

3. If AC = 6, AB = 9, find AD.

4. If DB = 4, BC = 10, find AB.

5. If AD = 3, DB = 27, find CD.



6. If AD = 2, AB = 18, find BC.


÷.

7. Solve for x.

8. Find the length of LM.

